CodeMath.com ## Calculating power factor from amperage Amperage readings as taken in a motor starter where the capacitor is switched with the motor. ## NOTES: - 1) If the circuit is three-phase, - a) the current must be approximately equal on all three phases of the motor, and - b) the current must be approximately equal on all three phases of the capacitor. - 2) The load on the motor must be constant while the three readings are taken. - 3) If the load cycles, the cycles must be regular so readings can be obtained using a meter with an averaging function. ## Amperage to Power Factor Explanation Two right angle triangles can be described: In_phase_ $$I^2$$ = Line- I^2 – Out_of_phase_ I^2 In phase $$I^2 = Motor I^2 - (Out of phase-I + Capacitor I)^2$$ Written as one statement and simplified: $$Motor_I^2 - (Out_of_phase_I + Capacitor_I)^2$$ $$Motor_I^2 - Out_of_phase_I^2 - Capacitor_I^2 - (Out_of_phase_I \ x \ Capacitor_I \ x \ 2)$$ $$(Motor_I^2 - Capacitor_I^2 - Line I^2) / (Capacitor_I x 2)$$ = Line I^2 – Out_of_phase_ I^2 $$=$$ Line_ I^2 – Out_of_phase_ I^2 $$=$$ Line_ I^2 = Out_of_phase_I x Capacitor_I x 2 In phase current is calculated: Line_ $$I^2$$ – Out_of_phase_ I^2 = In_phase_ I^2 The power factor of the motor: In_phase_I / Motor_I = Motor_power_factor The corrected power factor: In_phase_I / Line_I = Line_power_factor