CodeMath.com

Calculating power factor from amperage

Amperage readings as taken in a motor starter where the capacitor is switched with the motor.

NOTES:

- 1) If the circuit is three-phase,
- a) the current must be approximately equal on all three phases of the motor, and
- b) the current must be approximately equal on all three phases of the capacitor.
- 2) The load on the motor must be constant while the three readings are taken.
- 3) If the load cycles, the cycles must be regular so readings can be obtained using a meter with an averaging function.

Amperage to Power Factor Explanation

Two right angle triangles can be described:

In_phase_
$$I^2$$
 = Line- I^2 – Out_of_phase_ I^2

In phase
$$I^2 = Motor I^2 - (Out of phase-I + Capacitor I)^2$$

Written as one statement and simplified:

$$Motor_I^2 - (Out_of_phase_I + Capacitor_I)^2$$

$$Motor_I^2 - Out_of_phase_I^2 - Capacitor_I^2 - (Out_of_phase_I \ x \ Capacitor_I \ x \ 2)$$

$$(Motor_I^2 - Capacitor_I^2 - Line I^2) / (Capacitor_I x 2)$$

= Line I^2 – Out_of_phase_ I^2

$$=$$
 Line_ I^2 – Out_of_phase_ I^2

$$=$$
 Line_ I^2

= Out_of_phase_I x Capacitor_I x 2

In phase current is calculated:

Line_
$$I^2$$
 – Out_of_phase_ I^2 = In_phase_ I^2

The power factor of the motor:

In_phase_I / Motor_I = Motor_power_factor

The corrected power factor:

In_phase_I / Line_I = Line_power_factor